
Spring 2024, Vol. 3, No. 1, 22-44
ISSN: 2769-9242

Scaling Up COVID-19 Testing: A Data Compres-
sion Approach

Miraslau Kavaliou ∗ and Anatolii Metel’skii †

Abstract

This research paper presents a novel scheme for expanding COVID-19 test-
ing capacity using fewer tests, based on the pooling of biological samples.
The methodology innovatively applies a binary approach to testing, wherein
each test tube is identified as negative or positive. By combining samples
and utilizing a simple multiplication operation to determine the presence
of virus RNA, this approach demonstrates the possibility of diagnosing 100
people with just 55 tests. The scheme is efficiency depends on the infection
rate, demonstrating greater effectiveness when less than 1 per 100 people
are infected. The paper also explores the application of this method for data
compression, showing a potential reduction in data size without loss of infor-
mation. The findings suggest that such a scheme could potentially increase
the number of individuals tested for COVID-19, allowing for more efficient
use of resources, while also opening new avenues for data compression in
digital systems.

Introduction

In the face of a global pandemic, the efficiency of diagnostic testing for

COVID-19 becomes paramount. At first glance, the straightforward solu-

tion to test 100 individuals appears to be conducting 100 separate tests.

However, this approach, while intuitive, is not the most efficient or re-

sourceful. The necessity to maximize testing capabilities without sacrific-

ing accuracy has led to the exploration of innovative strategies that depart

from traditional methodologies. This paper proposes an analysis scheme

that significantly reduces the number of required tests while maintaining

diagnostic precision.

The primary goal of this paper is to introduce and evaluate a novel

approach to COVID-19 testing that leverages pooled sample analysis. By

implementing this method, it is possible to dramatically increase the num-

ber of individuals tested with a finite number of tests. Such an approach

is particularly valuable in scenarios where testing resources are limited or

when aiming to scale up testing capacities rapidly.

∗Junior Student, Fulton Science Academy.
Contact: mkavaliou@fultonscienceacademy.org
† Professor of Mathematics, Belarusian National Technical University.
Contact: ametelskii@gmail.com



Scripta 23

Although the concept of pooled testing is not entirely new, its appli-

cation and optimization for COVID-19 testing present distinct challenges

and opportunities. This paper will explore these dimensions, comparing

the proposed method against traditional testing approaches and highlight-

ing its efficiency gains. A brief review of existing literature on pooled testing

strategies provides context and underscores the innovation of the proposed

scheme.

Organized into several key sections, this study begins with a detailed

explanation of the pooled testing methodology, followed by an analysis of

its impact on testing efficiency. A case study, focusing on the application

of this method in the USA as of June 1, 2020, illustrates its potential to

quadruple the number of individuals tested without additional resources.

The final sections discuss the broader implications of these findings for

public health policy and the management of current and future pandemics.

Through this introduction and the subsequent detailed exploration, this

paper aims to contribute a pragmatic and scalable solution to a pressing

global health challenge, offering a pathway to more efficient pandemic man-

agement through innovative testing strategies.

Text Extension

The crude idea is that two or more biological sample material can be com-

bined in one test tube. This approach is not exactly new (see for example

[1]), but the algorithm proposed prior uses the “degree positivity of the

test”, i.e. assumes a continuous or multi-valued scale when assessing the

amount of antibodies to COVID-19, which is problematic. Our idea, how-

ever, of identifying test samples (or test tubes) uses a nominative scale:

“negative” sample (Virus RNA not detected) or sample “positive” (Virus

RNA detected).

Assigning the value 1 to a negative sample (or test tube), and 0 to a

positive sample, we can describe the union of two samples x1, x2 can be

described by a simple multiplication operation:

x1 × x2 = 1× 1 = 1,

if both samples are negative, and

x1 × x2 = 1× 0 = 0× 1 = 0× 0 = 0,



Miraslau Kavaliou and Anatolii Metel’skii 24

if at least one sample is positive.

Consider this case when all samples are divided into pairs. The proposed

test scheme is as follows. We take two samples: x1, x2 and divide each into

two parts (keeping the original sample for further action), then we combine

samples x1, x2 into one test tube A. Remember that the variables x1, x2
can have only two values: 0 (positive) or 1 (negative).

The following situations are possible (a flowchart is provided at the end

of this section for reference):

Case 1. Test tube A is tested to be negative (we’ll write it like this: A = 1),

then x1 × x2 = 1. Solving this equation, we have x1 = x2 = 1, i.e. both

samples are negative. Two samples are checked by one test: (1, 1). Recall

that 1 represents negative sample with no Virus RNA. Then let’s denote the

probability of a negative sample as p and the probability of a positive sample

as q = 1−p (for example in USA on June 1, 2020 q = 1828344/17449404 =

0.10478, p = 0.89522).

The exact probability of this considered case is:

p1 = P (1, 1) = p× p = p2.

In this case, the sequence of tests is: A = 1, for a total of 1 test.

Case 2. Test tube A is tested to be positive (A = 0): x1×x2 = 0. Checking

the sample x1. We see that sample x1 is negative: x1 = 1, then from the

equation x1×x2 = 0 we get that x2 = 0. Thus, through two tests we have:

(1, 0); the first sample is negative, the second is positive.

The likelihood of such a situation is:

p2 = P (1, 0) = p× q = pq.

In this case, the sequence of two tests: A = 0, x1 = 1, for a total of 2 tests.

Case 3. Test tube A and sample x1 are both positive (A = 0, x1 = 0).

Sample value x2 will be set by additional testing: x2 = t2 (t2 = 0 or 1).

Through three tests, we will know (0, t2).

The chance of this situation is:

p3 = P (0, x2) = q.

In this case, the test sequence is: A = 0, x1 = 0, x2 = t2.



Scripta 25

x₁ ∧ x₂

(1,1)

1

x₁

0

(1,0)

1

x₂

0

(0,1)

1

(0,0)

0

Figure 1: Flowchart of the two samples casework

So, with the testing scheme outlined, we have found p1, p2, p3 to be the

probabilities: p2, pq, q. As p + q = 1, we can confirm that the sum of all

probabilities is equal to 1, i.e., that all possible cases have been considered:

p1 + p2 + p3 = p2 + pq + q = p(p+ q) + q = 1.

Now let’s find the expected number m1(p) of tests to recognize two

samples according to the proposed scheme. Let ai be the number of tests



Miraslau Kavaliou and Anatolii Metel’skii 26

in the i-th situation, then solve:

m1(p) = a1p1 + a2p2 + a3p3

= 1p2 + 2pq + 3q

= p2 + 2p(1− p) + 3(1− p)

= 3− p− p2.

Direct testing of two samples requires two tests. Let us now find which

values of p (probability that a sample taken at random is negative) satisfy

the inequalitym1(p) < 2. That is, we find for what values of p, our scheme is

more efficient (more tested people) and more economical (less financial costs

for the same number of contingent). For this we will solve the inequality

m1(p) = 3− p− p2 < 2, p ∈ [0, 1].

We find that we need p > 0.618034 for the sample pooling scheme to be

effective compared to the traditional scheme, when the number of tests is

equal to the number of samples.

Example. Consider the sample set (01111011101111011111). Here p =

16/20 = 0.8 > 0.618034, i.e., we expect the sample pooling scheme to be

effective.

We split the array into twos:

(01), (11), (10), (11), (10), (11), (11), (01), (11), (11).

To count the required number of tests, we identify each case and the

corresponding number of tests. In this example: case 2, (x1, x2) = (0, 1),

appears 2 times, with 3 tests each, case 1, (1, 1), appears 6 times with 1

test each, case 2, (1, 0), appears 2 times with 2 tests each.

Therefore, there are 16 tests in total and the length of the array (number

of samples) is 20.

Generalization

So, to test N people according to the proposed scheme it will take about

(N/2)m1(p) tests. In this context, m1(p) represents the number of tests re-

quired per group of people based on the probability pp (the ratio of positive

cases). Since the testing scheme likely involves grouping people and testing



Scripta 27

groups rather than individuals, N/2 is the number of such groups formed

from N people (assuming each group contains two people). Therefore, the

total number of tests needed is the number of groups multiplied by the

number of tests per group. Hence, M tests will allow M(2/m1(p)) people

to be tested.

The value k1(p) = 2/m1(p) is called the efficiency coefficient a scheme

that uses the splitting of samples into twos. Coefficient efficiency k1(p)

shows how many samples can be identified by one test. When p changes

from 0.618034 to 1, the efficiency factor k1(p) varies from 1 to 2.

For example,

k1(0.8) = 1.28205, k1(0.9) = 1.55039, k1(0.95) = 1.74292, k1(0.99) = 1.94194.

That is, if p = 0.8, then 100 tests can test about 128 people, etc.

For the value p = 0.89522 (as of June 1, 2020), k1(0.89522) = 1.53449,

therefore, the 300,000 tests performed daily in the US allow examine 300, 000×
k1(0.89522) = 300, 000×1.53449 = 460347 people, i.e. 160,347 more! Daily

and without a reduction in credibility!

We can consider other options for combining n samples: x1, x2, . . . , xn.

The combination of samples will correspond to the product of some set of

variables xi. The testing procedure is reduced to the study uniqueness of

the solution of some system of algebraic equations, the left side of which

is the product of a set of variables with two possible values: 0 or 1. If

the solution is not unique, then we must determine an additional variable,

which corresponds to an additional test.

For example, we detail the scheme of dividing samples into quadruples.

We take four samples: x1, x2, x3, x4 and divide each into two parts (we

must save the source material in case further testing is required), combine

all samples x1, x2, x3, x4 into tube A, and if required, samples x1, x2 into

tube B, samples x3, x4 into tube C. We divide into cases:



Miraslau Kavaliou and Anatolii Metel’skii 28

x₁ ∧ x₂ ∧ x₃ ∧ x₄

(1,1,1,1)

1

x₁ ∧ x₂

0

(1,1)

1

x₁

0

x₃ ∧ x₄

1

(1,0)

1

x₂

0

(0,1)

1

(0,0)

0

(1,1)

1

x₃

0

(1,0)

1

x₄

0

(0,1)

1

(0,0)

0

Figure 2: Flowchart of the four samples casework

Case 1. Tube A negative (A = 1):

x1 × x2 × x3 × x4 = 1.

Solving this equation, we have x1 = x2 = x3 = x4 = 1, i.e., all four samples

are negative. Four samples are checked by one test: (1, 1, 1, 1). Recall that

1 means negative sample. In this case, the sequence of tests is {A = 1}.
The likelihood of such a situation is

p1 = P (1, 1, 1, 1) = p× p× p× p = p4.

Case 2. Tube A is positive and tube B is negative. This gives the system:{
x1 × x2 × x3 × x4 = 0

x1 × x2 = 1
.

Hence we conclude that x1 = x2 = 1, x3 × x4 = 0. This necessitates

another test, so we test x3. In this case, we assume x3 = 1, so x4 = 0.

Therefore, the unique solution is (x1, x2, x3, x4) = (1, 1, 1, 0).

The likelihood of such a situation

p2 = P (1, 1, 1, 0) = p× p× p× q = p3q.



Scripta 29

In this case, the test sequence is {A = 0, B = 1, x3 = 1}, using three

tests total.

Case 3. Similar to case 2, we test tube A to be positive, and B to be

negative. Now we test x3 = 0, which necessitates the use of a fourth test

on x4. This gives the system:
x1 × x2 × x3 × x4 = 0

x1 × x2 = 1

x3 = 0

x4 = t4

,

with solution (1, 1, 0, t4).

The likelihood of such a situation

p3 = P (1, 1, 0, x4) = p× p× q × 1 = p2q.

In this case, the test sequence is {A = 0, B = 0, x3 = 0, x4 = t4}, using
four tests total.

Case 4. Tubes A,B test positive, while C tests negative. We use our fourth

test on x1. Consider when x1 = 1, then
x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 1

x1 = 1

,

which has unique solution (1, 0, 1, 1).

The likelihood of such a situation is

p4 = P (1, 0, 1, 1) = p× q × p× p = p3q.

In this case, the test sequence is {A = 0, B = 0, C = 1, x1 = 1} requiring
four tests.

Case 5. Tubes A,B test positive, while C tests negative. We use our fourth



Miraslau Kavaliou and Anatolii Metel’skii 30

test on x1. Consider when x1 = 0, then
x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 1

x1 = 0

,

which has solution (0, t2, 1, 1).

The likelihood of such a situation

p5 = P (0, x2, 1, 1) = q × 1× p× q = p2q.

In this case, the test sequence is {A = 0, B = 0, C = 1, x1 = 0, x2 = t2}
using four tests.

Case 6. All three tubes A,B,C test positive. In the first case, we test

x1 = 1 and x3 = 1. We have a system:

x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 0

x1 = 1

x3 = 1

,

with the only solution (1, 0, 1, 0).

The likelihood of such a situation

p6 = P (1, 0, 1, 0) = p× q × p× q = p2q2.

In this case, the test sequence {A = 0, B = 0, C = 0, x1 = 1, x3 = 1}
using five tests.

Case 7. All three tubes A,B,C test positive. Let x1 = 1 and x3 = 0.

Sample x4 is not defined, therefore, its value is set by additional testing.



Scripta 31

We have the system

x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 0

x1 = 1

x3 = 0

x4 = t4

,

which has solution (1, 1, 0, t4).

The likelihood of such a situation

p7 = P (1, 1, 0, x4) = p× p× q × 1 = p2q.

In this case, the test sequence is {A = 0, B = 0, C = 0, x1 = 1, x3 =

0, x4 = t4}, necessitating six tests.

Case 8. All three tubes A,B,C test positive. Let x1 = 0, then testing

x2 = t2. Testing x3, let x3 = 1.

We have the system

x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 0

x1 = 0

x2 = t2

x3 = 1

The likelihood of such a situation

p8 = P (0, x2, 1, 0) = q × 1× p× q = pq2.

In this case, the test sequence is {A = 0, B = 0, C = 0, x1 = 0, x2 =

t2, x3 = 1}, which includes six tests.

Case 9. All three tubes A,B,C test positive. Let x1 = 0, then testing



Miraslau Kavaliou and Anatolii Metel’skii 32

x2 = t2. Testing x3, let x3 = 0. Then we test x4 = t4. We have the system

x1 × x2 × x3 × x4 = 0

x1 × x2 = 0

x3 × x4 = 0

x1 = 0

x2 = t2

x3 = 0

x4 = t4

,

which has solution (0, t2, 0, t4). The likelihood of such a situation

p9 = P (0, x2, 0, x4) = q × 1× q × 1 = q2.

In this case, the test sequence is {A = 0, B = 0, C = 0, x1 = 0, x2 =

t2, x3 = 0, x4 = t4} and includes seven tests.

At this point, we have exhausted all possibilities, as we can verify by

finding the sum p1 + · · ·+ p9 and verifying it is 1.

Let us find the expected number m2(p) of tests for recognizing four

samples according to the proposed scheme (ai denoting the number of tests

in the i-th situation):

m2(p) =
∑
i

aipi

= p4 + 3p3q + 4(p2q + p3q) + 5(p2q2 + p2q) + 12pq2 + 7q2

= 7− 2p− 3p2 − p4.

Let us now find out for what values of the probability p the inequality

m2(p) < 4 is satisfied. That is, we find for what values of p ∈ [0, 1] the

given method is more efficient than direct testing using four tests.

Solving the inequality

m2(p) = 7− 2p− 3p2 − p4 < 4, p ∈ [0, 1].

We get that the condition p > 0.685291 is necessary for this scheme was

effective compared to traditional scheme when the number of tests is equal

to the number of samples.

When p changes from 0.685291 to 1, the efficiency factor k2(p) = 4/m2(p)



Scripta 33

varies from 1 to 4. Compare the coefficients efficiencies k1(p) = 2/m1(p)

and k2(p) = 4/m2(p) of circuits divided into twos and fours for different

values of p. For example, when splitting into twos:

k1(0.8) = 1.28205, k1(0.9) = 1.55039, k1(0.95) = 1.74292, k1(0.99) = 1.94194.

In the second scheme (with division into quadruples) we would have:

k2(0.8) = 1.30276, k2(0.9) = 1.89224, k2(0.95) = 2.53486, k2(0.99) = 3.57429.

Solving the inequality

4/(7− 2p− 3p2 − p4) > 2/(3− p− p2),

it can be found that the second scheme is more efficient for p > 0.786151.

This is confirmed by comparing the given values of the coefficients efficiency

k1(p) and k2(p) at p = 0.8, 0.9, 0.95, 0.99.

As of June 1, 2020 in the US, p = 0.89522, hence for the latest scheme

expected number of tests to identify four samplesm2(p) = 2.16303. Accord-

ingly, to diagnose 100 people one needs about 55 tests: (100/4)2.16303 =

54.0758. But if p < 0.786151, then the first scheme is more efficient. Let’s

say k1(0.7) = 1.10497 > k2(0.7) = 1.0283.

Recursive Formula for the Expected Number of Tests when Split

into Groups of 2n+1 Trials

Let’s get a recursive formula for calculating the expected number of tests

when splitting into groups of 2n+1 samples.

According to the scheme proposed above, if the test of the four is 0,

then we split it into two parts. Similarly, testing groups by 2n+1 trials will

be reduced to testing groups of 2n trials.

To write down the desired formula, let’s start with the value n = 2, i.e.

with splitting samples into quadruples. Recall that p is the probability of

a negative samples, and q = 1 − p is the probability of a positive sample.

When splitting into fours (n = 2), each two is complemented by all possible

(three) other twos. Therefore, 3×3 = 9 are possible different combinations

(on the right is the probability of such combinations and required number



Miraslau Kavaliou and Anatolii Metel’skii 34

of tests):

(1, 1, 1, 1) ⇒ P (1, 1, 1, 1) = p× p× p× p = p4 1 test

(1, 1, 1, 0) ⇒ P (1, 1, 1, 0) = p× p× p× q = p3q 3 tests

(1, 1, 0, x4) ⇒ P (1, 1, 0, x4) = p× p× q = p2q 4 tests

(1, 0, 1, 1) ⇒ P (1, 0, 1, 1) = p× q × p× p = p3q 4 tests

(1, 0, 1, 0) ⇒ P (1, 0, 1, 0) = p× q × p× q = p2q2 5 tests

(1, 0, 0, x4) ⇒ P (1, 0, 0, x4) = p× q × q = pq2 6 tests

(0, x2, 1, 1) ⇒ P (0, x2, 1, 1) = q × p× p = p2q 5 tests

(0, x2, 1, 0) ⇒ P (0, x2, 1, 0) = q × p× q = pq2 6 tests

(0, x2, 0, x4) ⇒ P (0, x2, 0, x4) = q × q = q2 7 tests.

From here we get the expected number of tests for four samples

m2(p) = p4 + 3p3q + 4p2q + 4p3q + 5p2q2 + 6pq2 + 5p2q + 6pq2 + 7q2 (1)

and using q = 1− p we obtain

m2(p) = 7− 2p− 3p2 − p4.

Note that when dividing the samples into groups of eight, each set of

four samples is paired with all possible combinations of the remaining four

samples, resulting in nine possible pairings. Therefore, when splitting into

groups of 23 samples, the number such eights are 9×9 = 81. In general, the

number of different sets containing 2n samples will be equal to sn = 32
n−1

.

After analyzing the two cases considered above (n = 1, 2), we can get

a recursive formula for the expected number of tests when splitting into

groups of 2n+1 samples.

The expected number of tests when split into groups of 2n sample has

the form

mn(p) = a1p
2n + a2r2(p, q) + · · ·+ asnrsn(p, q), a1 = 1, q = 1− p, (2).

Here p2
n
, r2(p, q), . . . , rsn(p, q) are the probabilities of different cases

each containing 2n samples, while a1, a2, . . . , asn are the number of tests

required for evaluating a particular set. For example, for n = 2, expression

(2) has the form of equation (1).



Scripta 35

Note that using q = 1− p gives

p2
n
+ r2(p, 1− p) + · · ·+ rsn(p, 1− p) = 1, (3)

since it is the sum of the probabilities (proportions) of all the different sets

2n samples.

Let us express mn+1(p) in terms of mn(p). To do this, we will create a

function

fn(k) = (a1+k+1)p2
n
+(a2+k+1)r2(p, q)+· · ·+(asn+k+1)rsn(p, q). (4)

Let’s simplify the last expression. Expanding the brackets, we get

fn(k) = (a1 + k + 1)p2
n
+ (a2 + k + 1)r2(p, q) + · · ·+ (asn + k + 1)rsn(p, q)

= p2
n
+ a2r2(p, q) + · · ·+ asnrsn(p, q)

+ (k + 1)(p2
n
+ r2(p, q) + · · ·+ rsn(p, q)).

In this way,

fn(k) = mn(p) + (k + 1)(p2
n
+ r2(p, q) + · · ·+ rsn(p, q)),

and in view of (3) we use q = 1− p to obtain

fn(k) = mn(p) + (k + 1).

Taking into account that when passing from n to n + 1, each set of

2n samples are padded with all possible 2n others sets, we get that the

expected number of tests with 2n+1 samples in the group will be equal to

mn+1(p) = p2
n
(p2

n
+ r2(p, q)(a2 + 1) + · · ·+ rsn(p, q)(asn + 1))

+ r2(p, q)fn(a2) + · · ·+ rsn(p, q)fn(asn). (5)

Indeed, a set of the form (1, 1, . . . , 1︸ ︷︷ ︸
n

, 1, 1, . . . , 1︸ ︷︷ ︸
n

) has probability p2
n+1

and is identified by one test. Sets (1, 1, . . . , 1︸ ︷︷ ︸
n

, ∗, ∗, . . . , ∗︸ ︷︷ ︸
n

), where among

the characters marked with (∗) there is at least one 0, have probabilities

p2
n
r2(p, q), . . . , p

2nrsn(p, q). Testing the whole set (1, 1, . . . , 1, ∗, ∗, . . . , ∗)
get 0 by testing a subset (1, 1, . . . , 1) we get 1. Therefore, we conclude

a priori that subset test (∗, ∗, . . . , ∗) is 0. Probability rk(p, q) k-th subset



Miraslau Kavaliou and Anatolii Metel’skii 36

(∗, ∗, . . . , ∗) is taken from (2) and for its identification will require ak − 1

tests, since testing the entire subset of (∗, ∗, . . . , ∗) is not necessary — its

test is known to is 0. Thus, a set of the form (1, 1, . . . , 1, ∗, ∗, . . . , ∗) in (5)

match amount

p2
n
(p2

n
+ r2(p, q)(a2 + 1) + . . .+ rsn(p, q)(asn + 1)).

Now consider a set of the form (x, x, . . . , x︸ ︷︷ ︸
n

, ∗, ∗, . . . , ∗︸ ︷︷ ︸
n

), where among

characters, labeled (x) there is at least one 0, and a subset (∗, ∗, . . . , ∗) —
arbitrary of possible sn pieces. We will assume that the subset (x, x, . . . , x)

has the probability r2(p, q), and the subset (∗, ∗, . . . , ∗) has the probability

rk(p, q), k = 1, sn (r1(p, q) = p2
n
). Then the probabilities of sets of the form

(x, x, . . . , x, ∗, ∗, . . . , ∗) are r2(p, q)r1(p, q), . . . , r2(p, q)rsn(p, q). Testing the

whole set (x, x, . . . , x, ∗, ∗, . . . , ∗) get 0, identification subsets (x, x, . . . , x),

(∗, ∗, . . . , ∗) according to (2) requires a2 and ak tests. Therefore, a set of

the form (x, x, . . . , x, ∗, ∗, . . . , ∗) in (5) match amount

r2(p, q)((a1 + a2 + 1)p2
n
+ . . .+ rsn(p, q)(asn + a2 + 1))) = r2(p, q)fn(a2)

according to (4).

By analogous reasoning, we obtain the remaining terms in (5):

r3(p, q)fn(a3), . . . , rsn(p, q)fn(asn).

We transform expression (5) in this way

mn+1(p) = p2
n
(p2

n
+ r2(p, q) + · · ·+ rsn(p, q))− p2

n+1

+ p2
n
(p2

n
+ r2(p, q)a2 + · · ·+ rsn(p, q)asn)

+ r2(p, q)fn(a2) + · · ·+ rsn(p, q)fn(asn).

Taking into account (2) and fn(ai) = mn(p) + ai + 1, i = 2, sn, write



Scripta 37

down

mn+1(p) = p2
n
(p2

n
+ r2(p, q) + · · ·+ rsn(p, q))− p2

n+1

+ p2
n
mn(p, q)

+ r2(p, q)(mn(p) + a2 + 1)

+ · · ·
+ rsn(p, q)(mn(p) + asn + 1). (6)

Expanding the brackets in (6) and grouping, we have

mn+1(p) = p2
n
(p2

n
+ r2(p, q) + · · ·+ rsn(p, q))− p2

n+1
+mn(p, q)

+ (p2
n
+ r2(p, q)a2 + · · ·+ rsn(p, q)asn)− p2

n

+ (p2
n
+ r2(p, q) + · · ·+ rsn(p, q))− p2

n
.

Replacing q = 1 − p and taking into account equations (2) and (3),

we obtain the expected number of tests via p, the proportion of negative

samples,

mn+1(p) = 2mn(p) + 1− p2
n − p2

n+1
, (7)

where m1(p) = 3− p− p2.

It is easy to verify that formula (7) is true for n = 2 by comparing the

result obtained using (7) with the expression for m2(p) from section 1.

From the expressions for mn(p), n = 1, 2, 3, 4, we find that the par-

titions into twos, threes, fours, eights are effective for p > 0.61804, p >

0.68529, p > 0.72726, p > 0.75104 respectively.

Interval p ∈ (p∗, p
∗) , where kn(p∗) = 1, kn(p

∗) = kn+1(p
∗), we call

the efficiency interval 2n partitions. Inside this interval kn(p) > 1, but for

p > p∗: kn(p) < kn+1(p).

Thus, we have the following results.

m1(p) = 3− p− p2,

with efficiency interval (0.61804; 0.78615): splitting into 2 samples is effec-

tive starting from 0.61804 and by 0.78615, and then splitting into 4 samples

is effective.

m2(p) = 7− 2p− 3p2 − p4,



Miraslau Kavaliou and Anatolii Metel’skii 38

with efficiency interval (0.68529; 0.88665).

m3(p) = 15− 4p− 6p2 − 3p4 − p8,

with efficiency interval (0.72726; 0.94162).

m4(p) = 31− 8p− 12p2 − 6p4 − 3p8 − p16,

with efficiency interval (0.75104; 0.97037).

m5(p) = 63− 16p− 24p2 − 12p4 − 6p8 − 3p16 − p32,

with efficiency interval (0.76329; 0.98507).

m6(p) = 127− 32p− 48p2 − 24p4 − 12p8 − 6p16 − 3p32 − p64,

with efficiency interval (0.76933; 0.99251).

m7(p) = 255− 64p− 96p2 − 48p4 − 24p8 − 12p16 − 6p32 − 3p64 − p128,

with efficiency interval (0.77232; 0.99624).

m8(p) = 511−128p−192p2−96p4−48p8−24p16−12p32−6p64−3p128−p256,

with efficiency interval (0.77380; 0.99812).

m9(p) = 1023−256p−384p2−192p4−96p8−48p16−24p32−12p64−6p128−3p256−p512,

effectively starting at p = 0.77454 etc.

Splitting into quadruples is more efficient than splitting into twos when

p > 0.78615. Splitting into eights is more efficient than splitting into fours

at p > 0.88665. Splitting into sixteen is more efficient than splitting into

eights for p > 0.94162.

If we accept p = 0.89522 (USA, June 1, 2020), then it is more efficient

splitting into eights k3(0.89522) = 1.87298. So 300 000 tests performed

daily in the United States, allow you to examine 300 000 × k(0.89522) =

300 000×1.87298 = 561 894 people, i.e., an astounding 261 894 more people

daily and without loss of reliability.

When split into sixteen

k4(0.95) = 3.04613, k4(0.99) = 8.26646.



Scripta 39

That is, at the beginning of the epidemic, 100 tests can check about 826

people.

Experimental Verification

For experimental verification of the proposed results, we have created [2] a

Python script that simulates the optimization algorithm testing for COVID-19.

A brief description of this script’s steps is as follows:

1. Defining the total number of samples and the ratio of positive samples

(samplesNum, positiveRatio).

2. Generating a pseudo-random sequence of samples with the specified

positiveRatio (False = negative, True = positive).

3. Determining the optimal size of the group by a predefined function

groupSize = 2e, e = −round(log2(positiveRatio)+0.643856).

This function has been defined experimentally by running this script

a total of 400 times with varying positiveRatio by 0.1, and with a

samplesNum of 250,000. Leading to simulatively testing 100 million

COVID-19 tests.

4. Splitting the sequence into sub-sequences by group size.

Checking every sub-sequence using logical AND operation, so if

any of the samples in the group is positive, the result is positive.

If the result is negative, then every sample in the group must be

negative and we move to the next sub-sequence.

If the result is positive, the next step would depend on the size

of the sub-sequence:

i. if 2 samples then we check the first, if it is positive we have

to check the second as well.

ii. if 4 samples or more then we break it down further, by calling

step 4 recursively with sub-sequence as an input and so on.

The function for calculating the optimal group size is not perfect com-

pared to the simulation. In most cases, however, it does provide the best



Miraslau Kavaliou and Anatolii Metel’skii 40

group size value, and errors have a minimal effect on efficiency. We are able

to see this error in Figure 3, where red represents our function and blue our

simulation. In general, anywhere we see red there is error, yet this error is

insignificant for use since it is never off by an amount larger than one.

Figure 3: Showcase of minor error in function (red) and simulation (blue)
[3]

Data Compression

We consider a set of samples as an array of zeros (positive sample) and

units (negative sample). Our goal was to have this array match an array

of tests of shorter length! That’s why the proposed approach to sample

analysis is applicable to the construction of the algorithm compression of

binary data.

Based on the first testing algorithm, we split the file into pairs digits,

and we have the following encoding table.

1. (1, 1) ⇐⇒ (1),

2. (1, 0) ⇐⇒ (0, 1),

3. (0, x2) ⇐⇒ (0, 0, x2).



Scripta 41

The expected number of characters to encode two (x1, x2) was calculated

above to be m1(p) = 3− p− p2, and for p > 0.618034 this the table ensures

the inequality m1(p) < 2, i.e., it ensures data compression. Here, p is the

probability that a randomly taken symbol from the file is 1. p equals the

ratio of the number of ones in the file to the total number of characters.

The compression coefficient z1(p), i.e., the ratio of the length of the

compressed file to the length of the original z1(p) = m1(p)/2 changes from

1 to 0.5 when p changes from 0.618034 to 1.

The file is decoded based on the same table. If the file starts with 1,

then it corresponds to (1, 1). If (0,1), then replace with (1,0). If (0,0), then

we take the next symbol x2 and put the triple (0, 0, x2) in matching two

(0, x2). After, we take a segment of the file up to the next instance of “1”,

etc.

If there are more zeros in the file than ones, namely, the proportion of

zeros satisfies the inequality p > 0.618034, then we swap “0” and “1”:

1. (0, 0) ⇐⇒ (0),

2. (0, 1) ⇐⇒ (1, 0),

3. (1, x2) ⇐⇒ (1, 1, x2).

Example. Let’s take a file of 20 characters

(0111, 1011, 1011, 1101, 1111).

Clearly, p = 16/20 = 0.8 > 0.618034, so we expect the compressed file to

be shorter length.

Splitting the file into two

(01, 11, 10, 11, 10, 11, 11, 01, 11, 11),

according to the given encoding table in compressed form, it will be encoded

as

(001, 1, 01, 1, 01, 1, 1, 001, 1, 1),

i.e. it contains 16 characters.

Similarly, one can write an encoding table for compression data based

on any other test protocol by means of sample pooling.

According to the second algorithm, we split the file into fours (x1, x2, x3, x4),

and we have the following encoding table.



Miraslau Kavaliou and Anatolii Metel’skii 42

1. (1, 1, 1, 1) ⇐⇒ (1),

2. (1, 1, 1, 0) ⇐⇒ (0, 1, 1),

3. (1, 1, 0, x4) ⇐⇒ (0, 1, 0, x4),

4. (1, 0, 1, 1) ⇐⇒ (0, 0, 1, 1),

5. (1, 0, 1, 0) ⇐⇒ (0, 0, 0, 1, 1),

6. (1, 0, 0, x4) ⇐⇒ (0, 0, 0, 1, 0, x4),

7. (0, x2, 1, 1) ⇐⇒ (0, 0, 1, 0, x2),

8. (0, x2, 1, 0) ⇐⇒ (0, 0, 0, 0, x2, 1),

9. (0, x2, 0, x4) ⇐⇒ (0, 0, 0, 0, x2, 0, x4).

The expected number of characters to encode a quadruple (x1, x2, x3, x4)

is equal to m2(p) = 7 − 2p − 3p2 − p4. At p > 0.685291 we have the in-

equality m2(p) < 4, which provides compression. As before, p is equal to

the ratio of the number of ones in the file to the number of all characters.

The compression coefficient z2(p), i.e., the ratio of the length of the

compressed file to the length of the original z2(p) = m2(p)/4 here changes

from 1 to 0.25 when p changes from 0.685291 to 1.

Example. Let’s take the same file of 20 characters

(0111, 1011, 1011, 1101, 1111).

We have p = 16/20 = 0.8 > 0.685291, so based on the encoding table get

compressed file

(00101, 0011, 0011, 0101, 1)

of 18 characters.

The file is decoded according to the following rule. If a the file starts

with 1, then we replace it with (1, 1, 1, 1). If (0,1,1), then replace with

(1,1,1,0). If (0,1,0), then we take the next character x4 and put this set

in matching quadruple (1, 1, 0, x4). Next, we take a segment of the file up

to next 1. If this is (0, 0, 0, 1, 1), then it corresponds to (1, 0, 1, 0). If it is

(0, 0, 0, 1, 0) then take the next character x4 and to this set we assign the

quadruple (1, 0, 0, x4), etc.



Scripta 43

Discussion/Author’s comments

Of course, the implementation of the proposed optimization of testing on

COVID-19 requires appropriate technological support, and the proposed

data compression algorithm has rather a demonstrative than a practical

purpose. However, the proposed scheme testing and associated random

variable (number of tests) applicable to other tasks. For example, product

quality control (the classical problem of identifying counterfeit coins that

differ from suitable, say, with less weight) or the health of a chain composed

of series-connected elements, etc.

The main purpose of this publication is to demonstrate a mathemat-

ical view of everyday life. Nurturing a mathematical style of thinking is

the original goal of learning math! The latter is necessary for efficient and

correct using the capabilities of computer technology and information tech-

nologies. “Stop Teaching Calculating! Start Teaching Maths!”—called by

the Wolfram brothers, authors of the famous Mathematica package. The

mathematical style of thinking is the perception of any situation as prob-

lematic, from the point of view of its possible optimization. In an advanced

form, the mathematical way of thinking is the ability to analyze and for-

mulate a problem situation on the language of mathematical concepts, the

ability to synthesize a solution using not only well-known algorithms but

analogies and borrowings from other fields of science, perhaps not directly

related to this problem.

According to the classification of sciences presented by the Nobel lau-

reate awards (1962) by the famous physicist Lev Landau, all sciences are di-

vided into: 1) natural—physics, chemistry, etc., 2) unnatural—humanitarian,

and 3) one supernatural—mathematics. “Numbers govern the world”, said

the Pythagoreans. The power of mathematics is in its universality: “Math-

ematics is the art of naming different things with the same name” (Henri

Poincare, French mathematician) and beauty: “I love mathematics not only

because it finds use in technology, but also because it is beautiful!” (Rosa

Peter, Hungarian mathematician).

“What a strange world we live in!”



Miraslau Kavaliou and Anatolii Metel’skii 44

References

1. Daley, B. The maths logic that could help test more people for coron-

avirus https://theconversation.com/the-maths-logic-that-

could-help-test-more-people-for-coronavirus-134287. 2020.

2. https://drive.google.com/file/d/1u7gfawiuJx8wuvLBWwaKWlEj

GVYWVmr1/view?usp=sharing.

3. https://drive.google.com/file/d/1KlxhtJRlsf6AeIqOKqCDMcxHp

4gh2gjl/view.

https://theconversation.com/the-maths-logic-that-could-help-test-more-people-for-coronavirus-134287
https://theconversation.com/the-maths-logic-that-could-help-test-more-people-for-coronavirus-134287
https://drive.google.com/file/d/1u7gfawiuJx8wuvLBWwaKWlEjGVYWVmr1/ view?usp=sharing
https://drive.google.com/file/d/1u7gfawiuJx8wuvLBWwaKWlEjGVYWVmr1/ view?usp=sharing
https://drive.google.com/file/d/1KlxhtJRlsf6AeIqOKqCDMcxHp4gh2gjl/view
https://drive.google.com/file/d/1KlxhtJRlsf6AeIqOKqCDMcxHp4gh2gjl/view

